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Chiral amines are ubiquitous structural elements of small-
molecule pharmaceuticals and agrochemicals that improve human
life. While several approaches have been developed to prepare chiral
amines, decades of research have evolved catalytic hydrogenation
into a technology ideally suited for their stereoselective synthesis.1

Although success has been achieved with enantioselective hydro-
genation of protected enamides, enamines, and imines, many
catalysts fail to deliver the same levels of control and efficiency
demonstrated with ketones and olefins.1-3 Diminished enantiose-
lectivities may be observed because of ambiguous catalyst-substrate
interactions complicated by imine-enamine tautomerization and
interconversion of imine E/Z stereoisomers.1 Furthermore, available
methods often require cumbersome protecting group manipulations
to provide a substrate suited for hydrogenation and subsequent
release of the desired amine products.

We report herein the first examples of efficient, atom-economical,
enantioselective hydrogenations of unprotected N-H imines,4 a
fundamental step in the development of an ideal direct asymmetric
reductive amination of ketones. To the best of our knowledge, N-H
ketoimines have been completely overlooked as substrates for
enantioselective hydrogenation. This is possibly because they have
been considered difficult to synthesize and isolate and often exist
as complex mixtures of E/Z isomers and imine-enamine tautomers.
Multigram amounts of N-H ketoimines 3a-3v were readily
prepared via organometallic addition to nitriles 1 followed by
quenching with anhydrous MeOH and isolation of the corresponding
hydrochloride salts as single isomers, free-flowing, bench-stable
solids (Scheme 1).

Inspired by a number of imine hydrogenation studies,5,6 we
anticipated that rigid electron-rich ligands could lead to high
enantioselectivities with N-H ketoimines (Scheme 2). Our initial
evaluation began with hydrogenation of N-H imine 3a as the model
substrate with a series of catalysts. Few promising results were
obtained using Rh-phosphine catalysts. A number of electron-rich
chiral Ir-phosphine complexes were also evaluated (Table 1, entries
1-4). While poor results were obtained using TangPhos,7a

DuanPhos,7b BINAP,7c and Me-DuPhos,7d we were gratified to find
that axially chiral Ir-(S,S)-f-binaphane7e (Figure 1) was a promising
candidate for further optimization. Only moderate conversion was
observed in most solvents (Table 1, entries 5-8). Use of MeOH
as solvent gave complete conversion albeit with poor enantiose-
lectivity (Table 1, entry 11). We found that the best enantioselec-
tivity was obtained using CH2Cl2 as solvent (80% ee, Table 1, entry
6). We optimized the solvent combination and ratio with MeOH
to achieve complete conversion and high enantioselectivity (Table

1, entries 12-18). Interestingly, under these optimized conditions
we observed a negative impact on enantioselectivities when the
chloride counterion in 3a was replaced with noncoordinating
counterions: methanesulfonate (75% conversion, 51% ee), PF6

-

(90% conversion, 91% ee), BF4
- (99% conversion, 88% ee).

A variety of N-H imine substrates 3a-3v were then examined
using the Ir-f-binaphane catalyst system (Table 2). The bulkiness
of the R2 group in substrates had an influence on the enantiose-
lectivities. As the R2 group changed from Me to tert-Bu, the
enantioselectivity of the product gradually decreased from 93% to
80% ee (entries 2-5). Substrates bearing both electron-donating
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Scheme 1. Synthesis of N-H Iminesa

a Conditions: (a) R2MgX or R2Li, in MTBE or THF; MeOH quench.
(b) HCl in Et2O.

Scheme 2. Asymmetric Hydrogenation of N-H Imines

Table 1. Asymmetric Hydrogenation of 3a (R1 ) 4-Tolyl, R2 )
Methyl)a

entry ligand solvent % convb % eec

1 TangPhos TFEd 99 0
2 DuanPhos TFE 41 8
3 BINAP TFE 40 14
4 Me-DuPhos TFE 20 20
5 (S,S)-5 TFE 31 52
6 (S,S)-5 CH2Cl2 60 80
7 (S,S)-5 Toluene 15 70
8 (S,S)-5 DCEe 60 32
9 (S,S)-5 EtOAc 37 38
10 (S,S)-5 THF 30 20
11 (S,S)-5 MeOH 99 9
12 (S,S)-5 MeOH/TFE (2:1) 99 10
13 (S,S)-5 MeOH/DCE (2:1) 99 20
14 (S,S)-5 MeOH/CH2Cl2 (1:2) 99 89
15 (S,S)-5 MeOH/CH2Cl2 (2:1) 99 95f

16 (S,S)-5 MeOH/CH2Cl2 (2:1) 99 95g

17 (S,S)-5 MeOH/CH2Cl2 (2:1) 98 95h

18 (S,S)-5 MeOH/CH2Cl2 (2:1) 99 73i

a Reaction conditions: [Ir(COD)Cl]2/phosphine/substrate ) 2.5:5:100,
1:1 ligand/metal, rt, 100 atm of H2, 18 h. b Determined by GC analysis.
c Determined by chiral GC analysis of the corresponding acetamides (see
Supporting Information). d 2,2,2-Trifluoroethanol. e 1,2-Dichloroethane.
f 30 atm of H2. g 10 atm of H2. h 5 atm of H2. i 10 atm of H2, S/C )
100, 48 h.
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and -withdrawing substituents on the aromatic ring in R1 were
hydrogenated with uniformly high enantioselectivities (entries
6-14). Both the 1- and 2-naphthyl N-H imines afforded product
amines in 92 and 93% ee, respectively (entries 18 and 19). We
found that the presence of either a methyl or chloro substituent at
the ortho-position resulted in a slightly reduced ee (entry 15 and
17). The reduction of enantioselectivity may be attributed to the
steric hindrance of the ortho-substituents in the substrates. However,
an ortho-methoxy group did not exhibit a similar effect (entry 16).
Significant erosion in enantioselectivity was observed when the aryl
substituent was replaced with a sterically hindered tert-butyl group
(entry 20). Finally, the Ir catalyst showed promising enantioselec-
tivities on dialkyl imine 3u and diaryl imine 3v, substrates with a
more limited steric and electronic bias (entries 21-22).

Preliminary mechanistic information was garnered through
isotopic labeling of imine 3a with D2 in MeOH/CH2Cl2 (Scheme
3). 1H NMR analysis of the crude product showed exclusive
formation of R-deuterio-amine hydrochloride 4a, suggesting a
pathway consistent with reduction of the imine tautomer.3 In
addition, enantioface selection of imine 3a by the Ir-f-binaphane
catalyst was found to be identical to that of 4′-methylacetophenone.9

In conclusion, we have developed an unprecedented, operation-
ally simple, and mild asymmetric hydrogenation of N-H ke-

toimines. This method allows the enantioselective synthesis of chiral
amines without use of protecting groups. Further studies are
underway and will be reported in due course.
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Figure 1

Table 2. Enantioselective Hydrogenation of N-H Iminesa

entry R1 R2 product yield (%)b ee (%)c

1 4-MeC6H4 (3a) Me 4a 95 95 (R)d

2 C6H5 (3b) Me 4b 93 93 (R)
3 C6H5 (3c) Et 4c 92 86 (R)
4 C6H5 (3d) n-Bu 4d 92 88 (R)
5 C6H5 (3e) t-Bu 4e 90 80 (R)
6 4-MeOC6H4 (3f) Me 4f 95 93 (R)
7 4-FC6H4 (3g) Me 4g 95 92 (R)
8 4-ClC6H4 (3h) Me 4h 95 94
9 4-BrC6H4 (3i) Me 4i 94 93 (R)
10 4-CF3C6H4 (3j) Me 4j 93 93 (R)
11 3-MeC6H4 (3k) Me 4k 95 92
12 3-MeOC6H4 (3 L) Me 4 L 94 94
13 3-ClC6H4 (3m) Me 4m 92 92
14 3-BrC6H4 (3n) Me 4n 93 91
15 2-MeC6H4 (3o) Me 4o 92 81
16 2-MeOC6H4 (3p) Me 4p 93 92 (R)
17 2-ClC6H4 (3q) Me 4q 92 81
18 1-naphthyl (3r) Me 4r 95 93
19 2-naphthyl (3s) Me 4s 94 92 (R)
20 t-Bu (3t) Me 4t 90 17 (R)
21 cyclohexyl (3u) Me 4u 91 73 (R)
22 4-MeC6H4 (3v) Ph 4v 95 23 (R)

a Conditions: [Ir(COD)Cl]2/(S,S)-f-binaphane/substrate ) 2.5:5:100,
10 atm of H2, rt, 20 h, >99% conversion. b Isolated yields of
hydrochloride salts. c Determined by chiral GC analysis of the
corresponding acetamides (see Supporting Information). d Absolute
configuration determined by comparison with literature (see Supporting
Information for other entries).8

Scheme 3. Isotopic Labeling of 3a
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